Evaluation of Generalized Howland Integrals

By Chih-Bing Ling

Abstract

This paper presents a method of evaluation of the generalized Howland integrals. The values are tabulated to 10 D .

The generalized Howland integrals are defined by

$$
\begin{array}{ll}
I_{k, s} \tag{1}\\
I_{k, s}^{*}
\end{array}=\frac{2^{k}}{k!} \int_{0}^{\infty} \frac{x^{k} e^{-s x} d x}{\sinh 2 x \pm 2 x}=\frac{1}{2(k!)} \int_{0}^{\infty} \frac{x^{k} e^{-s x / 2} d x}{\sinh x \pm x}, \quad(k \geqslant 1)
$$

where k and s are integers. For the sake of convergence, k is restricted as indicated above and s is restricted to be not less than -1 . Owing to their frequent occurrence in mathematical sciences, it is thought that they deserve a special consideration.

The four integrals for $s=0$ and 2 are the ordinary Howland integrals. The two integrals for $s=0$ have been evaluated to 25D by Ling and Lin [3] when k is odd and by Ling [4] when k is even. Those for $s=2$ have recently been evaluated to 20D by Ling and Wu [5]. It is the endeavor of the present paper to evaluate the remaining integrals to 10D.

The following recurrence relations for $s \geqslant 1$ are readily verified:

$$
\begin{align*}
& I_{k, s-2}+2(k+1) I_{k+1, s}-I_{k, s+2}=\left(\frac{2}{s}\right)^{k+1} \\
& I_{k, s-2}^{*}-2(k+1) I_{k+1, s}^{*}-I_{k, s+2}^{*}=\left(\frac{2}{s}\right)^{k+1} \tag{2}
\end{align*}
$$

By using these relations, the integrals $I_{k+1, s}$ and $I_{k+1, s}^{*}$ can be evaluated by recurrence in terms of $I_{k, s-2}, I_{k, s+2}$ and $I_{k, s-2}^{*}, I_{k, s+2}^{*}$ from the values of the leading integrals $I_{k,-1}, I_{k, 0}, I_{1, s}$ and $I_{k,-1}^{*}, I_{k, 0}^{*}, I_{3, s}^{*}$, respectively. Such a process of computation has the distinct advantage that no accuracy is lost in successive steps, except perhaps when $s=1$. To avoid this possibility, we take $I_{k, 1}$ and $I_{k, 1}^{*}$ as the leading integrals intead of $I_{k,-1}$ and $I_{k,-1}^{*}$.
As mentioned before, the integrals $I_{k, 0}$ and $I_{k, 0}^{*}$ have been evaluated to high precision of 25D. Plana's method was used for their evaluation. This method, however, is no longer applicable if the value of s in the integrals is other than zero. By expanding $e^{-x / 2}$ in the second form of the integrands in (1) into a series in x,

[^0]integrating and then applying the Kummer transformation [1], the following relations are found for $s \geqslant 1$:
\[

$$
\begin{align*}
& \left(\frac{2}{s+2}\right)^{k+1}-I_{k, s}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}\binom{n+k}{n}\left\{\left(\frac{2}{s+2}\right)^{n+k+1}-I_{n+k, s-1}\right\} \\
& I_{k, s}^{*}-\left(\frac{2}{s+2}\right)^{k+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}\binom{n+k}{n}\left\{I_{n+k, s-1}^{*}-\left(\frac{2}{s+2}\right)^{n+k+1}\right\} \tag{3}
\end{align*}
$$
\]

Here the ratio of the binomial coefficient to 2^{n} may or may not be greater than unity. When it is, a certain amount of accuracy is lost. The loss is larger, when k is larger. For instance, the loss is 5D when $k=20$ and 10D when $k=36$.

It appears possible to reduce the loss of accuracy if the computation for a unit increment of s is carried out in several steps instead of a single step as in (3). Suppose that four steps are taken such that in each step the increment of s is $\frac{1}{4}$. Then, in the r th step, for $r=1,2,3$, or 4, the intermediate integrals are given by

$$
\begin{aligned}
& \left(\frac{8}{4 s+r+8}\right)^{k+1}-I_{k, s+\frac{1}{4} r} \\
& \quad=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\binom{n+k}{n}\left\{\left(\frac{8}{4 s+r+7}\right)^{n+k+1}-I_{n+k, s+\frac{1}{4} r-\frac{1}{4}}\right\},
\end{aligned}
$$

$$
\begin{align*}
I_{k, s+\frac{1}{4} r}^{*}- & \left(\frac{8}{4 s+r+8}\right)^{k+1} \tag{4}\\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\binom{n+k}{n}\left\{I_{n+k, s+\frac{1}{4} r-\frac{1}{4}}^{*}-\left(\frac{8}{4 s+r+7}\right)^{n+k+1}\right\}
\end{align*}
$$

It is seen that the binomial coefficient involved is now divided by 8^{n} instead of 2^{n}. When $k=18$, the accumulated loss of accuracy in four steps together is reduced to slightly less than 2D only. Hence, if we begin the computation with the 25D values of $I_{k, 0}$ and $I_{k, 0}^{*}$ and take four steps for each unit increment of s, we can find up to $k=18,23 \mathrm{D}$ values of $I_{k, 1}$ and $I_{k, 1}^{*}, 21 \mathrm{D}$ values of $I_{k, 2}$ and $I_{k, 2}^{*}$, and 19D values of $I_{k, 3}$ and $I_{k, 3}^{*}$, successively. However, values of the intermediate integrals at each step for $k \geqslant 19$ are also needed in the computation. These values can be found directly by developing the integrals into series [5] as follows:

$$
\begin{equation*}
I_{k, s+r / 4}^{*}=\sum_{n=1}^{\infty}(\mp 1)^{n+1} q_{n}\left(k, s+\frac{r}{4}\right)\left(\frac{8}{8 n+4 s+r}\right)^{k+1} \tag{5}
\end{equation*}
$$

where, for $n \geqslant 0$,

$$
\begin{equation*}
q_{2 n+1}\left(k, s+\frac{r}{4}\right)=\sum_{t=0}^{\infty}\binom{k+2 t}{k} \frac{(n+t)!}{(n-t)!}\left(\frac{16}{16 n+4 s+r+8}\right)^{2 t} \tag{6}
\end{equation*}
$$

$$
q_{2 n+2}\left(k, s+\frac{r}{4}\right)=\sum_{t=0}^{\infty}\binom{k+2 t+1}{k} \frac{(n+t+1)!}{(n-t)!}\left(\frac{16}{16 n+4 s+r+16}\right)^{2 t+1}
$$

When $k=19$, the series in (5) are to be carried to $n=190$ for 23D, to $n=100$ for 21 D , and to $n=50$ for 19 D . For 10 D , the corresponding value of n is 14 when $k=15$, or 6 when $k=19$. The convergence of the series increases with k but only slightly with s.

When the values of the integrals for $s=0,1,2$, and 3 are available in high precision as described above, we can use the recurrence relations in (2) to compute $I_{k, s+2}$ and $I_{k, s+2}^{*}$ for $s \geqslant 2$ in terms of $I_{k, s-2}, I_{k+1, s}$ and $I_{k, s-2}^{*}, I_{k+1, s}^{*}$, respectively. Owing to the factor $2(k+1)$ associated with $I_{k+1, s}$ and $I_{k+1, s}^{*}$, some accuracy is always lost. The loss is 1 D when $k=4,1 \frac{1}{2} \mathrm{D}$ when $k=14$, or 2 D when $k=49$. Hence the integrals can be computed successively so long as the desired accuracy of 10D is still sustained. In this manner, values of a considerable number of integrals are obtained, including the leading integrals $I_{1, s}$ and $I_{3, s}^{*}$. There is ground to claim that the values of $I_{1, s}$ and $I_{3, s}^{*}$ thus obtained up to $s=20$ and 18, respectively, are accurate to 10D.

For further evaluation of $I_{1, s}$ and $I_{3, s}^{*}$, consider the asymptotic expansion of these integrals. We begin by changing the variable x in the integrals with the substitution

$$
\begin{equation*}
e^{x}=1+y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \tag{7}
\end{equation*}
$$

Reversion of the series yields

$$
\begin{equation*}
x=\ln (1+y)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\cdots \tag{8}
\end{equation*}
$$

The powers of x can therefore be expressed as series in y. By differentiation, we also find

$$
\begin{equation*}
d x=d y /(1+y) \tag{9}
\end{equation*}
$$

Next, find the reciprocals of the following expansions of x :

$$
\begin{align*}
& \frac{\sinh x+x}{x}=2+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\cdots \\
& \frac{\sinh x-x}{x^{3}}=\frac{1}{3!}+\frac{x^{2}}{5!}+\frac{x^{4}}{7!}+\frac{x^{6}}{9!}+\cdots \tag{10}
\end{align*}
$$

We have

$$
\begin{align*}
\frac{2 x}{\sinh x+x} & =1-\frac{x^{2}}{12}+\frac{x^{4}}{360}+\frac{x^{6}}{60,480}-\frac{11 x^{8}}{1,814,400}+\cdots, \\
\frac{x^{3}}{6(\sinh x-x)} & =1-\frac{x^{2}}{20}+\frac{11 x^{4}}{8400}-\frac{17 x^{6}}{756,000}+\frac{563 x^{8}}{2,328,480,000}-\cdots . \tag{11}
\end{align*}
$$

Suppose that these series in x are expressed as series in y in the form:

$$
\begin{equation*}
\frac{2 x}{\sinh x+x}=1+\sum_{m=2}^{\infty} p_{m} y^{m}, \quad \frac{x^{3}}{6(\sinh x-x)}=1+\sum_{m=2}^{\infty} p_{m}^{*} y^{m} . \tag{12}
\end{equation*}
$$

The following values are found:

m	2	3	4	5	6	7	8
p_{m}	$-\frac{1}{12}$	$\frac{1}{12}$	$-\frac{53}{720}$	$\frac{23}{360}$	$-\frac{3359}{60,480}$	$\frac{979}{20,160}$	$-\frac{155,083}{3,628,800}$
p_{m}^{*}	$-\frac{1}{20}$	$\frac{1}{20}$	$-\frac{187}{4200}$	$\frac{41}{1050}$	$-\frac{12,991}{378,000}$	$\frac{3841}{126,000}$	$-\frac{881,701}{32,340,000}$

To proceed further, let

$$
\begin{equation*}
y=\sin ^{2} \theta / \cos ^{2} \theta \tag{14}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
e^{-x / 2}=\cos \theta, \quad d x=2(\sin \theta / \cos \theta) d \theta \tag{15}
\end{equation*}
$$

We then have

$$
\begin{equation*}
I_{1, s}=\frac{1}{2 s}+\frac{1}{4} \sum_{m=2}^{\infty} p_{m} H_{s, m}, \quad I_{3, s}^{*}=\frac{1}{s}+\frac{1}{2} \sum_{m=2}^{\infty} p_{m}^{*} H_{s, m}, \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
H_{s, m} & =2 \int_{0}^{\pi / 2}\left(\frac{\sin \theta}{\cos \theta}\right)^{2 m+1} \cos ^{s} \theta d \theta \\
& =m!\Gamma\left(\frac{s}{2}-m\right) / \Gamma\left(\frac{s}{2}+1\right) \tag{17}\\
& =m!/\left\{\frac{s}{2}\left(\frac{s}{2}-1\right)\left(\frac{s}{2}-2\right) \cdots\left(\frac{s}{2}-m\right)\right\}
\end{align*}
$$

By expanding the preceding expression into inverse power series of s, the following asymptotic series are obtained:

$$
\begin{align*}
& I_{1, s} \sim \frac{1}{4}\left(\frac{2}{s}\right)-\frac{1}{24}\left(\frac{2}{s}\right)^{3}+\frac{1}{60}\left(\frac{2}{s}\right)^{5}+\frac{1}{336}\left(\frac{2}{s}\right)^{7}-\frac{11}{180}\left(\frac{2}{s}\right)^{9}+\cdots, \\
& I_{3, s}^{*} \sim \frac{1}{2}\left(\frac{2}{s}\right)-\frac{1}{20}\left(\frac{2}{s}\right)^{3}+\frac{11}{700}\left(\frac{2}{s}\right)^{5}-\frac{17}{2100}\left(\frac{2}{s}\right)^{7}+\frac{563}{115,500}\left(\frac{2}{s}\right)^{9}-\cdots . \tag{18}
\end{align*}
$$

The first series gives values to $10 \mathrm{D}, 11 \mathrm{D}, 12 \mathrm{D}$, when $s=16,20,24$, respectively, and the second when $s=10,13,16$, respectively.

As described before, 10 D values of $I_{1, s}$ and $I_{3, s}^{*}$ have been found up to $s=20$ and 18 , respectively. It is thus seen that further 10D values of these two integrals can be found from the asymptotic series in (18) alone.

Lastly, to evaluate the remaining integrals $I_{k,-1}$ and $I_{k,-1}^{*}$, the following series may be used:

$$
\begin{align*}
& \frac{1}{2^{k+1}} I_{k,-1}=1-\sum_{n=0}^{\infty} \frac{1}{2^{n+k+1}}\binom{n+k}{n}\left(1-I_{n+k, 0}\right), \\
& \frac{1}{2^{k+1}} I_{k,-1}^{*}=1+\sum_{n=0}^{\infty} \frac{1}{2^{n+k+1}}\binom{n+k}{n}\left(I_{n+k, 0}^{*}-1\right), \tag{19}
\end{align*}
$$

which are found similarly by expanding $e^{x / 2}$ in (1) into a series in x. No accuracy is lost in this case since here the ratio of the binomial coefficient to 2^{n+k+1} is always less than unity.

The foregoing computation was carried out on an IBM 3032 computer with extended precision. In the course of computation, the values are generally carried with an accuracy exceeding 10D. Ample guard digits were provided whenever needed to given an extra accuracy as far as practicable. In several instances, the integrals were computed by different methods for some overlapping k or s to serve as a check. Finally, the results were rounded off to 10D and shown in Tables 1-4. For the sake of brevity, other values are not shown. Further 10D values of $I_{1, s}$ and $I_{3, s}^{*}$ in Table 1 are both given by the first three terms of the respective asymptotic
series in (18). It may be mentioned that the first two terms of the series in (5) when $r=0$ are

$$
\begin{equation*}
I_{k, s} \sim \frac{2^{k+1}}{(s+2)^{k+1}} \mp \frac{(k+1) 2^{k+3}}{(s+4)^{k+2}} \tag{20}
\end{equation*}
$$

They give good approximation when k is large. Further 10D values of $I_{k, 1}$ and $I_{k, 1}^{*}$ in Table 2 are given when $s=1$ by the first term only. If both terms are used, they give 10 D values from $k=23$ onward.

Tables $1 \& 2$

Values of $I_{1, s}, I_{3, s}^{*}$ and $I_{k, 1}, I_{k, 1}^{*}$

$\begin{gathered} \hline \mathrm{s} \\ \text { or } \mathrm{k} \\ \hline \end{gathered}$	$\mathrm{I}_{1, \mathrm{~s}}$		I_{3}^{*}, s		$\mathrm{I}_{\mathrm{k}, 1}$		$\mathrm{I}_{\mathrm{k}, 1}{ }^{\text {l }}$	
1	0.35726	51300	0.79021	90430	0.35726	51300	-	
2	0.22011	95814	0.46071	37190	0.21089	86635	-	
3	0.15623	63163	0.32021	75927	0.14605	74537	0.79021	90430
4	0.12028	34787	0.24418	64095	0.10380	05261	0.26920	28971
5	0.09749	98574	0.19694	88557	0.07348	74141	0.13201	49095
6	0.08185	80268	0.16487	60199	0.05146	00004	0.07467	03132
7	0.07048	83836	0.14171	96838	0.03562	53748	0.04529	37207
8	0.06186	52335	0.12423	36202	0.02442	08531	0.02853	83900
9	0.05510	73534	0.11057	07199	0.01660	93689	0.01837	93682
10	0.04967	20114	0.09960	49274	0.01122	95814	0.01199	26267
11	0.04520	74267	0.09061	16352	0.00755	93368	0.00788	81283
12	0.04147	59140	0.08310	38443	0.00507	28893	0.00521	42567
13	0.03831	12562	0.07674	23485	0.00339	69198	0.00345	75221
14	0.03559	38024	0.07128	37241	0.00227	12707	0.00229	71652
15	0.03323	52717	0.06654	88043	0.00151	71047	0.00152	81325
16	0.03116	91294	0.06240	28195	0.00101	26760	0.00101	73574
17	0.02934	42938	0.05874	24644	0.00067	56671	0.00067	76484
18	0.02772	09046	0.05548	72329	0.00045	06807	0.00045	15169
19	0.02626	74072	0.05257	34633	0.00030	05545	0.00030	09065
20	0.02495	85002	0.04995	01563	0.00020	04124	0.00020	05603
21	0.02377	36613	0.04757	597.83	0.00013	36264	0.00013	36883
22	0.02269	60716	0.04541	70769	0.00008	90919	0.00008	91178
23	0.02171	18169	0.04344	54629	0.00005	93978	0.00005	94086
24	0.02080	92877	0.04163	77944	0.00003	95999	0.00003	96044
25	0.01997	87213	0.03997	44513	0.00002	64005	0.00002	64024
26	0.01921	18489	0.03843	88223	0.00001	76006	0.00001	76013
27	0.01850	16206	0.03701	67499	0.00001	17338	0.00001	17341
28	0.01784	19892	0.03569	60933	0.00000	78226	0.00000	78227
29	0.01722	77380	0.03446	63822	0.00000	52151	0.00000	52151
30	0.01665	43430	0.03331	85392	0.00000	34767	0.00000	34767
31	0.01611	78618	0.03224	46552	0.00000	23178	0.00000	23178
32	0.01561	48434	0.03123	78079	0.00000	15452	0.00000	15452
33	0.01514	22533	0.03029	19125	0.00000	10301	0.00000	10301
34	0.01469	74132	0.02940	15987	0.00000	06868	0.00000	06868
35	0.01427	79499	0.02856	21087	0.00000	04578	0.00000	04578
36	0.01388	17532	0.02776	92127	0.00000	03052	0.00000	03052
37	0.01350	69405	0.02701	91374	0.00000	02035	0.00000	02035
38	0.01315	18267	0.02630	85061	0.00000	01357	0.00000	01357
39	0.01281	48994	0.02563	42880	0.00000	00904	0.00000	00904
40	0.01249	47969	0.02499	37549	0.00000	00603	0.00000	00603

Tables 3 \& 4
Values of $I_{k, 3}, I_{k, 3}^{*}$ and $I_{k,-1} / 2^{k+1}, I_{k,-1}^{*} / 2^{k+1}$

k	$\mathrm{I}_{\mathrm{k}, 3}$	$\mathrm{L}_{\mathrm{k}, 3}$	$\mathrm{I}_{k_{2}-1} / 2^{\mathrm{k}+1}$	$I_{k,-1}^{*} / 2^{k+1}$
1	0.1562363163	-	0.8281604155	-
2	0.0461697930	-	0.8962281338	-
3	0.0173267749	0.3202175927	0.9491826604	1.1546150481
4	0.0070100147	0.0494674154	0.9772542460	1.0428005160
5	0.0029145579	0.0118403416	0.9903967899	1.0141856891
6	0.0012219741	0.0034414251	0.9961130213	1.0049808868
7	0.0005123332	0.0011135709	0.9984756980	1.0017879993
8	0.0002140033	0.0003848437	0.9994164949	1.0006469013
9	0.0000889236	0.0001388317	0.9997807591	1.0002343666
10	0.0000367442	0.0000515626	0.9999188141	1.0000847609
11	0.0000151021	0.0000195430	$0.99997^{\prime} 02797$	1.0000305571
12	0.0000061770	0.0000075146	0.9999892195	1.0000109745
13	0.0000025158	0.0000029197	0.9999961186	1.0000039260
14	0.0000010210	0.0000011430	0.9999986111	1.0000013991
15	0.0000004131	0.0000004500	0.9999995055	1.0000004968
16	0.0000001667	0.0000001779	0.9999998247	1.0000001758
17	0.0000000672	0.0000000705	0.9999999381	1.0000000620
18	0.0000000270	0.0000000280	0.9999999782	1.0000000218
19	0.0000000109	0.0000000112	0.9999999924	1.0000000077
20	0.0000000044	0.0000000044	0.9999999973	1.0000000027
21	0.0000000017	0.0000000018	0.9999999991	1.0000000009
22	0.0000000007	0.0000000007	0.9999999997	1.0000000003
23	0.0000000003	0.0000000003	0.9999999999	1.0000000001
24	0.0000000001	0.0000000001	1.0000000000	1.0000000000

The values of the integrals for $s=0$ and 2 , or the four ordinary Howland integrals, are referred to the existing tables in the papers [3], [4], [5]. When the values of other integrals are needed, they can be found from the known values by using the recurrence relations in (2) without losing accuracy.

The values of $I_{k,-1}$ and $I_{k,-1}^{*}$ may be checked by the recurrence relations in (2). Those of the other integrals may be checked by the relations shown below. They are, for $s \geqslant 1$,

$$
\begin{align*}
& \sum_{k=0}^{\infty} I_{2 k+1, s}=\frac{1}{s}-I_{1, s}, \quad \sum_{k=1}^{\infty} k I_{2 k, s}=\frac{1}{s^{2}}-I_{2, s}, \tag{21}\\
& \quad \sum_{k=1}^{\infty} I_{2 k+1, s}^{*}=\frac{1}{s}, \quad \sum_{k=2}^{\infty} k I_{2 k, s}^{*}=\frac{1}{s^{2}},
\end{align*}
$$

and for $I_{1, s}$ and $I_{3, s}^{*}$,

$$
\begin{array}{ll}
\sum_{s=0}^{\infty}(-1)^{s} I_{1,2 s+1}=\frac{\pi}{4}-V_{0}, & \sum_{s=1}^{\infty}(-1)^{s+1} I_{1,2 s}=\frac{1}{2} I_{1,0}-\frac{1}{2} I I I_{1}, \tag{22}\\
\sum_{s=0}^{\infty}(-1)^{s} I_{3,2 s+1}^{*}=\frac{4}{3} V_{2}^{*}-\frac{\pi^{3}}{24}, & \sum_{s=1}^{\infty}(-1)^{s+1} I_{3,2 s}^{*}=\frac{1}{2} I_{3,0}^{*}-\frac{1}{2} I I I_{3}^{*},
\end{array}
$$

where

$$
\begin{align*}
V_{0} & =\int_{0}^{\infty} \frac{\sinh x d x}{\sinh 2 x+2 x}=0.5268563984 \\
I I I_{1} & =2 \int_{0}^{\infty} \frac{x \tanh x d x}{\sinh 2 x+2 x}=0.4744296568 \\
V_{2}^{*} & =\frac{1}{2} \int_{0}^{\infty} \frac{x^{2} \sinh x d x}{\sinh 2 x-2 x}=1.4087956089 \tag{23}\\
I I I_{3}^{*} & =\frac{4}{3} \int_{0}^{\infty} \frac{x^{3} \tanh x d x}{\sinh 2 x-2 x}=1.4150633610
\end{align*}
$$

Owing to slow convergence, the tail part of the series in (22) can be found with the aid of the Euler transformation [1] or from the values of the series of inverse powers of natural numbers. The evaluation of the four integrals in (23) was considered by the author in a previous paper [2], but the values were given to 6 D only. It is straightforward to evaluate again the first three integrals. It may be more convenient to evaluate the last one from the following series:

$$
\begin{equation*}
I I I_{3}^{*}=\frac{1}{3} \sum_{n=1}^{\infty}\binom{2 n+2}{2}\left(I_{2 n+2,0}^{*}-U_{2 n+3}\right), \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}=1+\frac{1}{3^{n}}+\frac{1}{5^{n}}+\frac{1}{7^{n}}+\cdots, \quad(n \geqslant 2) \tag{25}
\end{equation*}
$$

Department of Mathematics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

1. T. J. I'A. Bromwich, Theory of Infinite Series, 2nd ed., Macmillan, New York, 1926, p. 62.
2. C. B. Ling, "Tables of values of 16 integrals of algebraic-hyperbolic type," MTAC, v. 11, 1957, pp. 160-166.
3. C. B. Ling \& J. Lin, "A new method of evaluation of Howland integrals," Math. Comp., v. 25, 1971, pp. 331-337.
4. C. B. Ling, "Further evaluation of Howland integrals," Math. Comp., v. 32, 1978, pp. 900-904.
5. C. B. Ling \& M. J. Wu, "Evaluation of integrals of Howland type involving a Bessel function," Math. Comp., v. 38, 1982, pp. 215-222.

[^0]: Received March 24, 1981; revised July 7, 1981.
 1980 Mathematics Subject Classification. Primary 65A05, 65D20, 65D30.
 Key words and phrases. Howland integrals, generalized Howland integrals.

